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Stabilizing atherosclerotic lesions and pre-
venting plaque ruptures can be seen as the
Holy Grail in vascular medicine. In this issue
of Molecular Therapy, Jin et al." suggest the
local delivery of microRNA-21 (miR-21)
mimics as a potential therapeutic strategy
to reduce plaque vulnerability. Interestingly,
inhibition of this microRNA has also been
proposed as a therapeutic approach for
in-stent restenosis, where the application
of anti-miR-21 oligonucleotides on stents
improved vessel patency.’

Atherosclerosis is a chronic inflammatory
disease resulting from the build-up of
lipid deposits in the innermost layer of an
artery. Apart from lipids, atherosclerotic pla-
ques comprise mainly smooth muscle cells
(SMCs), macrophages, calcium, and fibrous
connective tissue. Upon rupture or erosion
of vulnerable atherosclerotic plaques, platelet
aggregation results in thrombus formation
that can occlude the vessel lumen. Stents are
metallic scaffolds placed into the occluded
segment of a diseased artery to hold it open.
Current drug-eluting stents (DESs) are de-
signed to inhibit vascular SMC proliferation
to reduce neo-intima formation within the
stent lumen. While greatly enhancing stent
patency in coronary arteries, these anti-pro-
liferative agents also inhibit the proliferation
of endothelial cells, thus delaying re-endothe-
lialization and arterial healing. After DES im-
plantation, dual antiplatelet therapy is there-
fore required to prevent the inherent risk of
thrombosis and stent occlusion. Alternatives
to current DESs that would inhibit SMC pro-
liferation without delaying re-endothelializa-
tion should result in less thrombogenicity.

In the vasculature, miR-21 has previously
been implicated as a determinant of SMC
proliferation.” ® For example, pharmacolog-
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ical and genetic miR-21 inhibition markedly
decreased neo-intima formation in vein
grafts™® and balloon-injured carotid ar-
teries.” These findings led to the explo-
ration of local therapeutic strategies by
coating stents with miR-21 inhibitors.
When deployed in denuded arteries in rats,
this approach prevented SMC-mediated
in-stent restenosis without delaying re-
endothelialization.”

Conversely, SMC proliferation can also be
beneficial in stabilizing the vessel wall and
atherosclerotic plaques. For example, the
proliferative effects of miR-21 mimics in
SMCs reduced the expansion of abdominal
aortic aneurysms.” The results presented by
Jin et al.' in this issue propose the use of
miR-21 mimics to enhance plaque stability.
Unstable human plaques and atherosclerotic
lesions in apolipoprotein E (apoE)-deficient
mice (Apoef/ 7) exhibit lower miR-21 levels.
Based on in situ hybridization and immuno-
histochemistry, this expression pattern was
ascribed to SMCs. The authors further
show that plaques in Apoe/miR-21 double-
deficient mice (Apoe_/ “miR-21""") were
more prone to rupture. Additionally, the un-
stable plaques were shown to harbor lower
levels of the REI-silencing transcription fac-
tor (REST). REST has been identified as a
regulator of miR-21 while also being a direct
target of miR-21. Subsequent in vitro anal-
ysis of SMCs revealed an anti-proliferative
effect of REST, confirming the proliferative
role of miR-21. Finally, local delivery of
miR-21 mimics to carotid plaques using ul-
trasound-targeted microbubble destruction
enhanced plaque stability. These findings
suggest that, by increasing SMC prolifera-
tion, miR-21 mimics could stabilize the
SMC-rich fibrous cap that shields the lipid-
filled core of atherosclerotic plaques.

As is the case for most miRNAs, miR-21
is ubiquitously expressed.® It is particularly
abundant in circulating hematopoietic cells,
where it appears to act as an “emergency
brake” on inflammation. In macrophages,
miR-21 directly targets the pro-inflammatory
programmed cell death protein 4 (PDCD4),
thereby increasing the secretion of anti-in-
flammatory interleukin-10 (IL-10).° miR-21
also directly targets phosphatase and tensin
homolog (PTEN), steering macrophages
toward a reparative phenotype that pro-
motes resolution of inflammation and tissue
recovery.'’ Thus, miR-21 may also modulate
tissue inflammation, in part, through mono-
cyte differentiation toward an anti-inflam-
matory macrophage phenotype.

A recent study by Canfrin-Duque et al."'
also focused on miR-21 in the context
of atherosclerosis. miR-21 accumulated in
murine atherosclerotic plaques along with
CD68, a macrophage marker. Deficiency of
miR-21 in bone marrow cells promoted
vascular inflammation and plaque necrosis
in low-density lipoprotein receptor (LDLr)
null mice. Compared to wild-type bone
marrow, transplantation of miR-21""" bone
marrow into Ldlr ™'~ mice resulted in larger
and less stable atherosclerotic plaques due
to increased inflammatory cell infiltration.
Thus, miR-21 expression in murine hemato-
poietic cells attenuates vascular inflamma-
tion. The findings of Jin et al." also highlight
the impact of miR-21 on the influx of macro-
phages. Apoe™ " miR-21""" mice displayed
more advanced plaque formation at an early
age, with a concomitant increase of macro-
phage infiltration and foam cell formation.
In line with the recent findings of Canfran-
Duque et al.,'"' miR-21 null peritoneal mac-
rophages displayed an increase in oxidized
LDL uptake and foam cell formation through
kB (NF-«B)
signaling. Notably, secreted factors from
Apoe™’"miR-21""" macrophages could sup-
press SMC proliferation in vitro.
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Figure 1. MicroRNA-21-Based Therapy for Plaque Vulnerability and In-Stent Restenosis

Delivery of microRNA-21 (miR-21) mimic to atherosclerotic plaques by ultrasound-targeted microbubble
destruction (UTMD) enhances smooth muscle cell proliferation while also steering monocytes toward a reparative,
anti-inflammatory phenotype. Conversely, stents coated with miR-21 inhibitor (anti-miR-21) prevent in-stent
restenosis through their anti-proliferative effect on smooth muscle cells.

A common challenge in miRNA research
is to identify the cell types that are respon-
sible for the observed therapeutic benefits.
Although the present study confirms a mech-
anistic link between miR-21 and SMC prolif-
eration, it remains unclear whether the bene-
ficial effect relies predominantly on SMCs,
macrophages, or other cell types (Figure 1).
Using a multi-omics approach, we recently
identified a protein signature of symptomatic
atherosclerotic plaques that implied a shared
involvement of immune cells and SMCs."?
Also, the plasticity of SMCs is currently un-
der debate, with lineage tracing experiments
suggesting a potential SMC origin of macro-
phage-like cell types.'*'* Finally, apoE medi-
ates the reverse cholesterol transport,'” and
atherosclerosis is known to differ between
man and apoE null mice.'

Despite these notes of caution, the study by
Jin et al." advances our insight into the role

of miR-21 in vascular biology. This is a
timely contribution as miRNA-based thera-
pies progress to clinical application. Clinical
trials are currently underway in patients with
Alport syndrome, where systemic miR-21
inhibition is evaluated for the treatment of
renal fibrosis. A better understanding of the
effects of miR-21 in the context of other dis-
eases is therefore highly relevant. The find-
ings of Jin et al.' implicate that local therapy
with miR-21 may indeed achieve higher drug
concentrations at the target site and could
minimize the risk of systemic side effects
from miRNA therapeutics. Nevertheless,
even local therapy for ubiquitously expressed
miRNAs could have potential systemic ef-
fects, for example, by affecting circulating
cells in the blood stream.
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Keep Quiet and Stay in Line!
Smart Polymers to Keep an
Eye on Pancreatic Tumors

Pierre Cordelier!
https://doi.org/10.1016/j.ymthe.2018.03.006

Pancreatic cancer is among the deadliest
epithelial malignancies and one of the few
solid neoplasms with a rising incidence world-
wide. Pancreatic cancer is the 12th most com-
mon cancer in the US' and, paradoxically, is
predicted to become the second most com-
mon cause of cancer-related deaths within
the next decade or so.” Pancreatic cancer
prognosis is largely dependent on the
stage of diagnosis. Unfortunately, pancre-
atic tumors are rarely detectable at early
stage, and the vast majority of patients
(80%-90%) are diagnosed with local and/or
distant metastasis, with only 3% of patients
surviving to 5 years.’” Improving survival
will definitely require better therapeutics
for late-stage disease. In this issue of
Molecular Therapy, Naqvi et al.* describe
a new strategy to impair the metastatic
spread of experimental pancreatic cancer
tumors using nucleic acid binding poly-

mers (NABPs). They show that a third-
generation polyamidoamine dendrimer called
PAMAM-G3 was efficient in treating a well-
calibrated aggressive experimental mouse
model of pancreatic cancer dissemination.

The authors took advantage of the fact that
PAMM-G3 binds pro-inflammatory extra-
cellular nucleic acids and nucleic acid-
protein complexes to skew toll-like receptor
(TLR) activation.” These compounds, origi-
nally developed as a tool for gene delivery,
proved to be safe and effective in treating
experimental models of lupus, acute liver
failure, and influenza infection.® Interest-
ingly, circulating nucleic acids such as cell-
free DNA (cfDNA), pathogen associated
molecular patterns (PAMPs), and damage
associated molecular patterns (DAMPs)
are hallmarks of various carcinomas and
usual suspects in TLR-dependent metastatic

dissemination, notably of pancreatic cancer
cells.” Blunting the dialog between cancer
cells and their immediate microenvironment
may not only directly impair primary tumor
metastatic spread, but also jeopardize the
pre-conditioning of distant pre-metastatic
sites for remote cancer cell implantation.

With this in mind, the authors of the
new study found that PAMAM-G3 behaves
at least as a two-edged sword to abrogate
TLR activation and nuclear factor KB
(NF-kB) nuclear translocation induced
by cell-free DNA (cfDNA) in cancer cell
lines from pancreatic origin. The preferred
mechanism of action, which still needs to
be clarified in these particular cells, is that
PAMAM-G3 decreases the cellular uptake
and the subcellular localization of TLR9
agonists from the endosome to the nucleus
to prevent TLRY activation.” Interestingly,
as this NABP exerts its function by depleting
DAMPs and PAMPs upstream of TLRY,
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